Scheduling and data distribution in a multiprocessor video server *

A. L. Narasimha Reddy

IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120.

reddy@almaden.ibm.com

Abstract

In this paper, we will address the problem of distribut-
ing and scheduling movies on a multiprocessor video
server. We will also address the issue of scheduling
communication over the multiprocessor switch for the
playback of the scheduled movies. A solution is pro-
posed in this paper that addresses these three issues at
once. The proposed solution minimizes contention for
links over the switch. The proposed solution makes
movie scheduling very simple - if the first block of
the movie 1s scheduled, the rest of the movie is au-
tomatically scheduled. Moreover, if the first block of
the movie stream is scheduled without network con-
tention, the proposed solution guarantees that there
will be no network contention during the entire dura-
tion of playback of that movie.

1 Introduction

Several telephone companies and cable operators are
planning to install large video servers that would serve
video streams to customers over telephone lines or ca-
ble lines. These projects envision supporting several
thousands of customers with the help of one or sev-
eral large video servers. Multiprocessor systems may
be suitable candidates for supporting large amounts
of real-time I/O bandwidth required in these large
video servers. Several problems need to be addressed
for providing the required real-time I/O bandwidth in
such a multiprocessor system. In this paper, we out-
line some of the problems and some solutions.

In this paper, we will address the problems of data
organization and scheduling in a multiprocessor video
server. We will assume that the multiprocessor video
server is organized as shown in Fig. 1. A number
of nodes act as storage nodes. Storage nodes are re-
sponsible for storing video data either in memory, disk,
tape or some other medium and delivering the required
I/O bandwidth to this data. The system also has net-

*Proc. of 2nd IEEE Int. Conf. on Multimedia Computing
and Systems, May 1995

-

T
@’

@
Mul ti processor
Comruni cati on

Net wor k

Net wor k
Fig. 1. System model of a multiprocessor video
server.

work nodes. These network nodes are responsible for
requesting appropriate data blocks from storage nodes
and routing them to the customers. Both these func-
tions can reside on the same multiprocessor node, i.e.,
a node can be a storage node, or a network node or
both at the same time. Each request stream would
originate at one of the several network nodes in the
system and this network node would be responsible
for obtaining the required data for this stream from
the various storage nodes in the system.

To obtain high I/O bandwidth, data has to be
striped across a number of nodes. If a movie is com-
pletely stored on a single disk, the number of streams
requesting that movie will be limited by the disk band-
width. As shown earlier by [1], a 3.5” 2-GB IBM disk
can support upto 20 MPEG-1 streams. A popular

www.manaraa.com

movie may receive more than 20 requests over the

length of the playback time of that movie. To en- (0000)00 —— (0000)00
able serving a larger number of streams of a single (0001)01
(
(

movie, each movie has to be striped across a number 0010)02

of nodes. As we increase the number of nodes for strip-
ing, we increase the bandwidth for a single movie. If
all the movies are striped across all the nodes, we also
improve the load balancing across the system since ev-

(jm
ery node in the system has to participate in providing (010105
access to each movie. Hence, we assume that all the (011006
movies are striped across all the nodes in the system. (011207
The unit of striping across the storage nodes is called
a block. In our earlier studies on disk scheduling [1], 1000)08

0011)03

0100)04

we found that 256 Kbytes is a suitable disk block size 1001)09
for delivering high real-time bandwidth from the disk 101010

(
(
(
subsystem. (1012)11

A network node that is responsible for delivering
a movie stream to the user may have to communi- (110012
cate with all the storage nodes in the system during (110113

(
(

the playback of that movie. This results in a point
to point communication from all the storage nodes to

1110)14

1111)15 (1111

the network node (possibly multiple times depending
on the striping block size, the number of nodes in the
system and the length of the movie) during the play-
back of the movie. Each network node is responsible
for a number of movie streams. Hence the resulting
communication pattern is random point-to-point com-
munication among the nodes of the system.

For the rest of the paper, we will assume that every
node in the system is both a storage node and a net-
work node at the same time, i.e., a combination node.
We will use a multiprocessor system with an Omega
interconnection network as an example multiprocessor
system.

Movie (data) distribution is the problem of dis-
tributing the blocks of movies across the storage
nodes. This involves the order in which the blocks are
striped across the storage nodes. Data organization
determines the bandwidth available to a movie, load
balance across the storage nodes and the communica-
tion patterns observed in the network. Mowvie schedul-
ing is the problem of scheduling a storage node and a
network node such that the required blocks of a movie
stream arrive at the network node in time. At any
given point in time, a node can be involved in send-
ing one block of data and receiving one block of data.
Commaunication scheduling 1s a direct consequence of
the movie scheduling problem. When two transfers
are scheduled to take place between two different sets
of source and destination pairs, the communication
may not happen simultaneously between these pairs
because of contention in the network. Fig. 2. shows a
16-node Omega network [2] built out of 4x4 switches.
Communication cannot take place simultaneously be-
tween nodes 1 and 3 and nodes 9 and 2 in Fig. 2. Can
movies be scheduled such that there is no contention
at the source and the destination and in the network?
Communication scheduling problem deals with this is-

Fig. 2. A 16-node Omega network.

sue of scheduling the network resources for minimizing
the communication delays. If the nodes in the mul-
tiprocessor system are interconnected by a complete
crossbar network, there is no communication schedul-
ing problem since any pair of nodes in the system can
communicate without a conflict in the network. Disk
scheduling problem is dealt at each node separately
and we will assume that the system load is such that
disk bandwidth is not a problem.

Recent work [3, 1, 4] has looked at disk scheduling
in a video server. File systems for handling continuous
media have been proposed in [5, 6, 7, 3]. Traditional
deadline scheduling [8] techniques cannot be directly
applied to this problem because the network trans-
fer times are not constant and vary with the network
load. Simple deadline scheduling of network and stor-
age nodes also doesn’t avoid the possible conflicts in
the network between two simultaneous transfers.

2 Some notation

We will assume that time is divided into a number of
slots. The length of a slot is roughly equal to the av-
erage time taken to transfer a block of movie over the
multiprocessor network from a storage node to a net-
work node. Average delivery time itself is not enough
in choosing a slot; we will comment later on how to
choose the size of a slot. For now, consider that time
is divided into a number of slots. Each storage node
starts transferring a block to a network node at the
beginning of a slot and this transfer is expected to fin-

www.manaraa.com

ish by the end of the slot. It is not necessary for the
transfer to finish strictly within the slot but for ease
of presentation, we will assume that a block transfer
completes within a slot.

The time taken for the playback of a movie block is
called a frame. The length of the frame depends on
the block size and the stream rate. For a block size
of 256 Kbytes and a stream rate of 200 Kbytes/sec,
the length of a frame equals 256/200 = 1.28 seconds.
We will assume that a basic stream rate of MPEG-1
quality at 1.5Mbits/sec is supported by the system.
When higher stream rates are required, multiple slots
are assigned within a frame to achieve the required
delivery rate for that stream.

For a given system, the block size is chosen first.
For a given basic stream rate, the frame length is then
determined. Slot width is then approximated by divid-
ing the block size by the average achievable data rate
between a pair of nodes in the system. This value is
adjusted for variations in communication delay. Also,
we require that frame length be an integer multiple of
the slot width. From here, we will refer to the frame
length in terms of number of slots per frame 'F’.

Now, the complete schedule of movies in the system
can be shown by a table as shown in Fig. 3. The ex-
ample system has 4 nodes, 0, 1, 2, and 3 and contains
5 movies A, B, C, D, and E. The distribution of movies
A, B, C, D, E across the nodes 0, 1, 2, and 3 is shown
in Fig. 3 (a). For example, movie E is distributed
cyclically across nodes in the order of 2, 1, 0, and 3.
For this example, we will assume that the frame length
F = 3. Now, if movie E needs to be scheduled at node
0, data blocks need to be communicated from nodes 2,
1, 0 and 3 to node 0 in different slots. This is shown
in Fig. 3(b) where the movie is started in slot 0. Fig.
3(c) shows a complete schedule of 4 requests for movies
E, C, B, and E that arrived in that order at nodes 0,
1, 2, 3 respectively. Each row in the schedule shows
the blocks received by a node in different time slots.
The entries in the table indicate the movie and the id
of the sending node. Each column should not have a
sending node listed more than once since that would
constitute a conflict at the sender. A moviestream has
its requests listed horizontally in a row. The blocks of
a single stream are always separated by F slots, in this
case F = 3. Node 0 schedules the movie to start in
time slot 0. But node 1 cannot start its movie stream
in slot 0 as it conflicts with node 0 for requesting a
block from the same storage node 2. Node 2 can also
schedule its movie in slot 1. Node 3 can only sched-
ule 1ts movie in slot 2. Each request is scheduled in
the earliest available slot. The movie stream can be
started in any column in the table as long as its blocks
do not conflict with the already scheduled blocks. The
schedule table 1s wrapped around i.e., Slot 0 is the slot
immediately after Slot 11. For example, if another re-
quest arrives for movie E at node 2, we can start that
request in time Slot 3, and schedule the requests in a

wrap-around fashion in time Slots 6, 9, and 0 without
any conflict at the source and the destination. The
schedule table has F'N slots, where N is the number
of storage nodes in the system.

The schedule can be be represented by a set
(14, si5), a set of network node and storage node pairs
involved in a block transfer in slot j. If we specify
F such sets for the F slots in a frame (j = 1,2,...F),
we would completely specify the schedule. If a movie
stream 1s scheduled in slot j in a frame, then it is
necessary to schedule the next block of that movie in
slot j of the next frame (or in (j + F) mod FN) as
well. Once the movie distribution is given, the sched-
ule of transfer (n;;, s;;) in slot j of one frame automat-
ically determines the pair (n;;, s;;) in the next frame,
Si(j4+F)mod FN being the storage node storing the next
block of this movie and n;(j 4 Fymoa FN = nij. It is ob-
served that the F' slots in a frame are not necessarily
correlated to each other, but there is a strong correla-
tion between two successive frames of the schedule. It
is also observed that the length of the table (FN) is
equal to the number of streams that the whole system
can support.

Now, the problem can be broken up into two pieces:
(a) Can we find a data distribution that, given an as-
signment of (n;;,s;;) that is source and destination
conflict-free, can produce a source and destination
conflict-free schedule in the same slot j of the next
frame? and (b) Can we find a data distribution that,
given an assignment of (n;;,s;;) that is source, des-
tination and network conflict-free, produce a source,
destination and network conflict-free schedule in the
same slot j of the next frame? The second part of
the problem, (b), depends on the network of the mul-
tiprocessor and that is the only reason for addressing
the problem in two stages. We will propose a general
solution that addresses (a). We then tailor this solu-
tion to suit the multiprocessor network to address the

problem (b).

3 Proposed solution

3.1 Part (a)

It has been realized earlier that if all the movies
are distributed in the same pattern among the stor-
age nodes, the movie scheduling problem becomes
simple[9]. Assume all the movies are striped among
the storage nodes starting at node 0 in the same pat-
tern i.e., block ¢ of each movie is stored on a storage
node given by ¢ mod N, N being the number of nodes
in the system. Then, a movie stream accesses stor-
age nodes in a sequence once it is started at node 0.
If we can start the movie stream, it implies that the
source and the destination do not collide in that time
slot. Since all the streams follow the same sequence
of source nodes, when 1t 1s time to schedule the next
block of a stream, all the streams scheduled in the cur-

www.manaraa.com

3(a). Movie distribution.

Movie/Blocks

HOOQm =

0 1 2 3
0 1 2 3
13 0 2
2 0 3 1
3 2 1 0
2 1 0 3

3 (b). Schedule for movie E.

Slot 0 | 1] 2 3 |45

6 |78 9 |10 | 11

E.2 E.1

E.0 E.3

3(c). Complete schedule.

Req/Movie.Sender || Slot 0 | 1 2 3 4 5 6 7 8 9 10 | 11
E.2 E.1 E.0 E.3
1 C.2 C.0 C.3 C.1
2 B.1 B.3 B.0 B.2
3 E.2 E.1 E.0 E.3

Fig. 3. An example movie schedule.

rent slot would request a block from the next storage
node in the sequence and hence would not have any
conflicts. In our notation, a set (n;;,s;;) in slot j of
a frame is followed by a set (n;;,(s;; + 1) mod N)
in the same slot j of the next frame. It is clear
that if (n;;, s;;) is source and destination conflict-free,
(n5,(sij + 1) mod N) is also source and destination
conflict-free.

This simple approach makes movie distribution and
scheduling stright-forward. However, it does not ad-
dress the communication scheduling problem. Also, it
has the following drawbacks: (i) not more than one
movie can be started in any given slot. Since every
movie stream has to start at storage node 0, node 0
becomes a serial bottleneck for starting movies. (ii)
when short movie clips are played along with long
movies, short clips increase the load on the first few
nodes in the storage node sequence resulting in non-
uniform loads on the storage nodes. (iii) as a results of
(a), the latency for starting a movie may be high if the
request arrives at node 0 just before a long sequence
of scheduled busy slots.

The proposed solution addresses all the above issues
(i), (ii) and (iii) and the communication scheduling
problem. The proposed solution uses one sequence
of storage nodes for storing all the movies. But, it
does not stipulate that every movie start at node 0.
We allow movies to be distributed across the storage
nodes in the same sequence, but with different starting
points. For example movie 0 can be distributed in the
sequence of 0, 1, 2, ..., N-1, movie 1 can be distributed
in the sequence of 1, 2, 3, ..., N-1, 0 and movie k (mod
N) can be distributed in the sequence of k, k+1, ...,
N-1, 0, ..., k-1. We can choose any such sequence of

storage nodes, with different movies having different
starting points in this sequence.

When movies are distributed this way, we achieve
the following benefits: (i) multiple movies can be
started in a given slot. Since different movies have
different starting nodes, two movie streams can be
scheduled to start at their starting nodes in the same
slot. (ii) Since different movies have different starting
nodes, even when the system has short movie clips,
all the nodes are likely to see similar workload and
hence the system is likely to be better load-balanced.
Different short movie clips place the load on different
nodes and this is likely to even out. (iii) Since differ-
ent movies have different starting nodes, the latency
for starting a movie is likely to be lower since the re-
quests are likely to spread out more evenly.

The benefits of the above approach can be realized
on any network. Again, if the set (n;;,s;;) 1s source
and destination conflict-free in slot j of a frame, then
the set (ni;, (555 +1) mod N) is given to be source and
destination conflict-free in slot j of the next frame,
whether or not all the movies start at node 0. As
mentioned earlier, it is possible to find many such dis-
tributions. In the next section, it will be shown that
we can pick a sequence that also solves problem (b),
i.e., guarantees freedom from conflicts in the network.

3.2 Part (b)

We will use Omega network as an example multi-
processor interconnection network. The solution de-
scribed is directly applicable to hypercube networks
as well. The same technique can be employed to find
suitable solution for other networks. The approach

www.manaraa.com

is to choose an appropriate sequence of storage nodes
such that if movie streams can be scheduled in slot j
of a frame without communication conflicts, then the
consecutive blocks of those streams can be scheduled
in slot j of the next frame without communication
conflicts.

With our notation, the problem is to determine a
sequence of storage nodes sg, s1,...,sy—1 such that
given a set of nodes (n;j;,s;;) that are source, desti-
nation and network conflict-free, it is automatically
guaranteed that the set of nodes (15, s((i+1) mod N);)
are also automatically source, destination and network
conflict-free.

First, let us review the Omega network. Fig. 2.
shows a multiprocessor system with 16 nodes which
are interconnected by a 16x16 switch with a single
path between any pair of nodes. Fig. 2. is an Omega
network constructed out of 4x4 switches. To route a
message from a source node whose address is given by
SpS18283 to a destination node whose address is given
by dydidads, the following procedure is employed: (a)
shift the source address left circular by two bits to
produce s2s350s1, (b) use the switch in that stage to
replace sgs1 with dod; and (c) repeat the above two
steps for the next two bits of the address. In general,
steps (a) and (b) are repeated as the number of stages
in the network. Network conflicts arise in step (b) of
the above procedure when messages from two sources
need to be switched to the same output of a switch.

Now, let’s address our problem of guarantee-
ing freedom from network conflicts for a set
(Mij, S(i+1) mod N j) given that the set (ng;,s;;) is
conflict-free. Our result is based on the following the-
orem of Omega networks.

Theorem: If a set of nodes (n;,s;) is network
conflict-free, then the set of nodes (n;, (s; + a)modN)
is network conflict-free, for any a.

Proof: Refer to [2].

The above theorem states that given a network
conflict-free schedule of communication, then a uni-
form shift of the source nodes yields a network conflict-
free schedule.

There are several possibilities for choosing a stor-
age sequence that guarantees the above property. A
sequence of 0, 1, 2, ..., N-1 is one of the valid se-
quences - a simple solution indeed! Let’s look at an
example. The set S; = (0,0), (1,1), (2,2), ..., (14,14),
(15,15) of network-storage nodes is conflict free over
the network (identity mapping). From the above theo-
rem, the set Sy = (0,1), (1,2), (2,3), ..., (14,15), (15,0)
1s also conflict-free and can be so verified. If 57 i1s the
conflict-free schedule in a slot j, S» will be the schedule
in slot j of the next frame, which is also conflict-free.

We have shown in this section a simple round-robin
distribution of movie blocks in the sequence of 0, 1,
2, ..., N-1 yields an effective solution for our problem.
This data distribution with different starting points
for different movies solves (a) the movie scheduling

problem, (b) the load balancing problem, (c) the prob-
lem of long latencies for starting a movie, and (d) the
communication scheduling problem.

Now, the only question that remains to be addressed
is how does one schedule the movie stream in the first
place, i.e., in which slot should a movie be started.
When the request arrives at a node n;, we first deter-
mine its starting node sy based on the movie distribu-
tion. We look at each available slot j (where n; is free
and sq is free) to see if the set of already scheduled
movies do not conflict for communication with this
pair. We search until we find such a slot and schedule
the movie in that slot. Then, the complete length of
that movie is scheduled without any conflicts.

4 Other issues

4.1 Choosing a slot size

Ideally, we would like all block transfers to complete
within a slot. However, due to variations in delivery
time due to variations in load over time, all the block
transfers may not finish in the slot they are initiated.
One option is to choose the slot to be large enough
that it accommodates the maximum delivery time for
a block. This approach, however, may not use the
network as effectively since it allocates larger amount
of time than the average delivery time for a block. If
the slot is chosen to be the average delivery time, how
do we deal with the transfers that take larger than
average delivery delays?

Fig. 4. shows some results from simulation experi-
ments on a 256-node 4-dimensional torus network with
100 MB/s link transfer speeds. These results are only
being presented as an example and similar results have
to be obtained for the network under consideration.
In the simulations, block arrival rates are varied until
the deadlines for those block transfers could be met by
the network. The figure shows the average time taken
for message delivery and the maximum block deliv-
ery time and the maximum delay in starting a request
at different request arrival times. It is observed that
the average message delivery time is nearly constant
and varies from 2.8 ms to 2.89 ms over the considered
range of arrival times. However, the maximum delay
observed by a block transfer goes up from 5.3 ms to 6.6
ms. Similarly, the maximum delay in starting a block
transfer goes up from 0 ms to 2.68 ms. Even though
the average message completion time didn’t vary sig-
nificantly over the considered range of arrival rates,
the maximum delays are observed to have a higher
variation. If we were to look at only the average block
transfer times, we might have concluded that it is pos-
sible to push the system throughput further since the
request inter-arrival time of 4 ms is still larger than the
average block transfer delay of 2.89 ms. If we were to
look at only the maximum block transfer times, we
would have concluded that we could not reduce the

www.manaraa.com

81— O Max. delivery time 4dtorus-256nodes

O Average delivery time
< Max. starting delay (ms)

Response time (ms)
e
[

8 9 10 11
Inter-arrival time (ms)

Response times (ms) vs. inter-arrival time (ms)

Fig. 4. Observed delays in a 4-dim. 256-node system.

inter-arrival times to below 6 ms. However, the real
objective of not missing any deadlines forced us to
consider both the average and maximum delays and
to choose a different peak operating point of 4 ms of
inter-arrival time (slot width).

It is clear from the above description that we need
to carry out some experiments in choosing the optimal
slot size. Both the average and the maximum delays
in transferring a block over the network need to be
considered. As mentioned earlier, the slot size is then
adjusted such that a frame is an integer multiple of
the width of the slot.

4.2 Different stream rates

When the stream rate is different from the basic
stream rate, multiple slots are assigned within a frame
to that stream to achieve the required stream rate.
For example, for realizing a 3Mbits/sec stream rate, 2
slots are assigned to the same stream within a frame.
These two slots are scheduled as if they are two inde-
pendent streams. Only difference is that the network
node assigns a larger number of block buffers and han-
dles them differently than with a stream at basic rate.
When the required stream rate is not a multiple of
the basic stream rate, a similar method can be uti-
lized with the last slot of that stream not necessar-
ily transferring a complete block. The complexity of
buffer management increases at the network node.

4.3 Stream startup latency

It 1s possible that when a stream A is requested, the
next slot where this stream could be started is far
away in time resulting in a large startup latency. In

such cases, an already scheduled stream B can be
moved around within a frame to reduce the requested
stream’s latency. If stream B is originally scheduled
at time 7', then stream B can be moved to any free
slot within 7'+ F'— 1 while maintaining guarantees on
its deadlines.

4.4 When network nodes and storage
nodes are different

It is possible to find mappings of network nodes and
storage nodes to the multiprocessor nodes that guar-
antee freedom from network conflicts. For example,
assigning the network nodes the even addresses and
the storage nodes the odd addresses in the network,
and distributing the movies in round-robin fashion
among the storage nodes yields similar guarantees.

4.5 Node failures

In this section, we will show how to tolerate a storage
node failure.

Before, we can deal with the subject of schedul-
ing, we need to talk about how the data on the failed
data is duplicated elsewhere in the system. There are
several ways of handling data protection, RAID, and
mirroring being two examples. RAID increases the
load on the surviving disks by 100% and this will not
be acceptable in a system that has to meet real-time
guarantees unless the storage system can operate well
below its peak operating point. Mirroring may be pre-
ferred because the required bandwidths from the data
stored in the system are high enough that the entire
storage capacity of a disk drive may not be utilized.
The un-utilized capacity can be used for storing a sec-
ond copy of the data. We will assume that the stor-
age system does mirroring. We will also assume that
the mirrored data of a storage node is evenly spread
among some set of K| K < N, storage nodes.

Let the data on the failed node f; be mapped to
nodes mg, my, ..., mg_1. Before the failure, a stream
may request blocks from nodes 0,1,2, ..., fo,..N — 1
in a round-robin fashion. The mirrored data of a

failed node is distributed among mg,my,...,mg_1
such that the same stream would request blocks in the
following order after a failure: 0,1,2,...,mg,..., N —
1,0,1,2,...mq,....,. N — 1,...,0, 1,2,omg_1,.... N —

1,0,1,2,...,mg,..., N—1. The blocks that would have
been requested from the failed node are requested from
the set of mirror nodes of that failed node in a round-
robin fashion. With this model, a failure increases
the load on the mirrored set of nodes by a factor of
(141/K) since for every request to the failed node, a
node in the set of mirrored nodes observes 1/K re-
quests. This implies that K should be as large as pos-
sible to limit the load increases on the mirror nodes.
Scheduling is handled in the following way after a
failure. In the schedule table, we allow [slots to be

www.manaraa.com

free. When the system has no failures, the system is
essentially idle during these [slots. After a failure, we
will use these slots to schedule the communication of
movie blocks that would have been served by the failed
node. A data transfer (n;, fo) between a failed node fy
and a network node n; is replaced by another transfer
of (n;, m;) where m; is the storage node that has the
mirror copy of the block that should have been trans-
fered in (n;, fo). If we can pack all the scheduled com-
munication with the mirror nodes into the available
free slots, with some appropriate buffer management,
then we can serve all the streams that we could serve
before the failure. Now, let’s examine the conditions
that will enable us to do this.

Given that the data on the failed node is now sup-
ported by K other nodes, the total number of blocks
that can be communicated in [slots is given by K * /.
The failed node could have been busy during (FN —1)
slots before the failure. This implies that K1 > FN—I,
or l > FN/(K+1)-(1).

It is noted that no network node n; can require
communication from the failed node fy in more than
(FN —1)/N slots. Under the assumptions of system
wide striping, once a stream requests a block from a
storage node, 1t does not request another block from
the same storage node for another N —1 frames. Since
each network node can support at most (FN —[)/N
streams before the failure, no network node requires
communication from the failed node fy in more than
(FN — I)/N slots. Since every node is free dur-
ing the [free slots, the network nodes require that
I>(FN—-0)/N,orl>FN/(N+1)-(2). The above
condition (1) is more stringent than (2).

We can show an upper bound on the number of free
slots required. We can show that at least 4 blocks
can always be transferred without network conflicts
as long as the source and destinations have no con-
flicts, when the network 1s built out of 4x4 switches.
If a set of four destinations are chosen such that they
differ in the most significant 2 bits of the address, it
can be shown that as long as the source and destina-
tions are different, the block transfers do not collide
in the network. The proof is based on the procedure
for switching a block from a source to a destination
and if the destinations are so chosen it can be shown
that these four transfers use different links in the net-
work. Since at most F'N — [blocks need to be trans-
ferred during the free slots, { < (FN —1)/4. This
gives | < FN/5. This implies that if the network
nodes requiring communication from the failed node
are equally distributed over all the nodes in the sys-
tem, we can survive a storage node failure with about

20% overhead.

The schedule of block transfers during the free slots
is allocated as explained below. A maximal number of
block transfers are found that do not have conflicts in
the network. This set is assigned one of the free slots.
With the remaining set of required block transfers,

the above procedure is repeated until all the commu-
nication is scheduled. This algorithm is akin to the
problem of finding a minimal set of matchings of a
graph such that the union of these matchings yields
the graph.

Network node failures can be handled in the follow-
ing way. The movie streams at the failed node are
rerouted (redistributed) evenly to the other network
nodes in the system. This assumes that the delivery
site can be reached through any one of the network
nodes. The redistributed streams are scheduled as if
the requests for these streams (with a starting point
somewhere over the length of the movie, not necessar-
ily at the beginning) are new requests.

If a combo node fails, both the above procedures for
handling the failure of a storage node and a network
node need to be invoked.

4.6 Clock Synchronization

Throughout the paper, it is assumed that the clocks
of all the nodes in the system are somehow synchro-
nized and that the block transfers can be started at
the slot boundaries. If the link speeds are 40MB/sec,
a block transfer of 256 Kbytes requires 6.4 ms, quite a
large period of time compared to the precision of the
node clocks which tick every few nanoseconds. If the
clocks are synchronized to drift at most, say 600 us,
the nodes observe the slot boundaries within £10%.
During this time, it is possible that the block trans-
fers observed collisions in the network. But during the
rest of the 90% transfer time, the block transfers take
place without any contention over the network. This
shows that the clock synchronization requirements are
not very strict. It is possible to synchronize clocks to
such a coarse level by broadcasting a small packet of
data at regular intervals to all the nodes through the
switch network.

4.7 Other Interconnection Networks

The proposed solution may be employed even when
the multiprocessor system 1s interconnected by a net-
work other than an omega network. To guarantee
conflict-free transfers over the network, appropriate
data distributions for those networks have to be de-
signed. For hypercube type of networks that can em-
ulate an omega network, same data distribution pro-
vides similar guarantees as in Omega network. It can
be shown that if movie blocks are distributed uni-
formly over all nodes in a hypercube in the same order
0,1,2,...,n— 1 (with different starting nodes), a con-
flict free schedule in one slot guarantees that the set of
transfers required a frame later would also be conflict
free.

For other lower degree networks such as a mesh or
a two dimensional torus, it can be shown that simi-
lar guarantees cannot be provided. For example, in a

www.manaraa.com

two dimensional nxn torus, the average path length
of a message is 2* n/4 = n/2. Given that the system
has a total of 4 * n? unidirectional links, the average
number of transmissions that can be in progress simul-
taneously is given by 4xn?/(n/2) = 8*n, which is less
than the number of nodes n” in the system for n > 8.
However, n simultaneous transfers are possible in a
2-dimensional torus when each node sends a message
to a node along a ring. If this 1s a starting position
of data transfer in one slot, data transfer in the same
slots in the following frames cannot be sustained be-
cause of the above limitation on the average number of
simultaneous transfers through the network. In such
networks, it may be advantageous to limit the data
distribution to a part of the system so as to limit the
average path length of a transfer and thus increasing
the number of sustainable simultaneous transfers.

4.8 Incremental growth

How does the system organization change if we need
to add more disks for putting more movies in the sys-
tem? In our system, all the disks are filled nearly to
the same capacity since each movie gets distributed
across all the nodes. If more disk capacity is required,
we would require that at least one disk be added at
each of the nodes. If the system has N nodes, this
would require N disks. The newly added disks can be
used as a set to distribute movies across all the nodes
to obtain similar guarantees for the new movies dis-
tributed across these nodes. If the system size N is
large, this may pose a problem. In such a case, it is
possible to organize the system such that movies are
distributed across a smaller set of nodes. For example,
the movies can be distributed across the two sets 0,
2,4,6 and 1, 3, 5, 7 in an 8-node machine to provide
similar guarantees as when the movies are distributed
across all the 8 nodes in the system. (This result is
again a direct consequence of the above Theorem 1.)
In this example, we only need to add 4 new disks for
expansion as opposed to adding 8 disks at once ear-
lier. This idea can be generalized to provide a unit of
expansion of K disks in an N node system, where K
is a factor of V.

This shows that the width of striping has an impact
on the system’s incremental expansion. The wider the
movies are striped across the nodes of the system, the
larger the bandwidth to a single movie but also the
larger the unit of incremental disk expansion.

When the whole system needs to be expanded in-
cluding the processors, the switch etc., the issues are
the same as in expanding a parallel system.

5 Summary

In this paper, we have shown that movie schedul-
ing, movie distribution and communication scheduling

problems in a multiprocessor based video server are
closely related. We proposed a simple movie distribu-
tion that simplifies movie scheduling and guarantees
conflict-free communication over the network. The so-
lution is proposed in two stages. The first step argued
that a simple regular pattern for storing movies across
storage nodes with different starting nodes can reduce
the movie scheduling problem to a simpler problem
of scheduling the first block of the movie. The sec-
ond step consists of deriving such a sequence such that
communication conflicts are minimized in the network.
We exploited the network topology of the multiproces-
sor to derive such a sequence that guarantees freedom
from communication conflicts if the first block of the
movie is scheduled without any communication con-
flicts.

6 Acknowledgments

Discussions with Roger Haskin and Jim Wyllie have
significantly contributed to our understanding of the
problem and to some of the ideas in this paper.

References

[1] A. L. Narasimha Reddy and Jim Wyllie. Disk
scheduling in a multimedia I/O system. Proc. of

ACM Multimedia Conf., Aug. 1992.

[2] Duncan H. Lawrie. Access and alignment of data
in an array processor. [EEFE Trans. Comput., C-
24(12):1145-1155, Dec. 1975.

[3] F. A. Tobagi, J. Pang, R. Biard, and M. Gang.
Streaming raid: A disk storage system for video
and audio files. Proc. of ACM Multimedia Conf.,
pages 393-400, Aug. 1993.

[4] P.S. Yu, M. S. Chen, and D. D. Kandlur. Grouped
sweeping scheduling for dasd-based multimedia
storage management. Multimedia Systems, 1:99—

109, 1993.

[5] H. M. Vin and P. V. Rangan. Designing file sys-
tems for digital video and audio. Proc. of 13th
ACM Symp. on Oper. Sys. Principles, 1991.

[6] D. Anderson, Y. Osawa, and R. Govindan. A
file system for continuous media. ACM Trans. on
Comp. Systems, pages 311-337, Nov. 1992.

[7] R. Haskin. The shark continuous-media file server.

Proc. of IEEFE COMPCON, Feb. 1993.
[8] C. L. Liu and J. W. Layland. Scheduling algo-

rithms for multiprogramming in a hard real-time
environment. Journal of ACM, pages 46-61, 1973.

[9] Roger Haskin. Personal communication. IBM Al-
maden Res. Center, 1994.

www.manaraa.com

