
www.manaraa.com

Scheduling and data distribution in a multiprocessor video server �A. L. Narasimha ReddyIBM Almaden Research Center650 Harry RoadSan Jose, CA 95120.reddy@almaden.ibm.comAbstractIn this paper, we will address the problem of distribut-ing and scheduling movies on a multiprocessor videoserver. We will also address the issue of schedulingcommunication over the multiprocessor switch for theplayback of the scheduled movies. A solution is pro-posed in this paper that addresses these three issues atonce. The proposed solution minimizes contention forlinks over the switch. The proposed solution makesmovie scheduling very simple - if the �rst block ofthe movie is scheduled, the rest of the movie is au-tomatically scheduled. Moreover, if the �rst block ofthe movie stream is scheduled without network con-tention, the proposed solution guarantees that therewill be no network contention during the entire dura-tion of playback of that movie.1 IntroductionSeveral telephone companies and cable operators areplanning to install large video servers that would servevideo streams to customers over telephone lines or ca-ble lines. These projects envision supporting severalthousands of customers with the help of one or sev-eral large video servers. Multiprocessor systems maybe suitable candidates for supporting large amountsof real-time I/O bandwidth required in these largevideo servers. Several problems need to be addressedfor providing the required real-time I/O bandwidth insuch a multiprocessor system. In this paper, we out-line some of the problems and some solutions.In this paper, we will address the problems of dataorganization and scheduling in a multiprocessor videoserver. We will assume that the multiprocessor videoserver is organized as shown in Fig. 1. A numberof nodes act as storage nodes. Storage nodes are re-sponsible for storing video data either in memory, disk,tape or some other mediumand delivering the requiredI/O bandwidth to this data. The system also has net-�Proc. of 2nd IEEE Int. Conf. on Multimedia Computingand Systems, May 1995

Storage

Storage

Combo

Network

Storage

Network

Multiprocessor
Communication
Network

Fig. 1. System model of a multiprocessor videoserver.work nodes. These network nodes are responsible forrequesting appropriate data blocks from storage nodesand routing them to the customers. Both these func-tions can reside on the same multiprocessor node, i.e.,a node can be a storage node, or a network node orboth at the same time. Each request stream wouldoriginate at one of the several network nodes in thesystem and this network node would be responsiblefor obtaining the required data for this stream fromthe various storage nodes in the system.To obtain high I/O bandwidth, data has to bestriped across a number of nodes. If a movie is com-pletely stored on a single disk, the number of streamsrequesting that movie will be limited by the disk band-width. As shown earlier by [1], a 3.5" 2-GB IBM diskcan support upto 20 MPEG-1 streams. A popular

www.manaraa.com

movie may receive more than 20 requests over thelength of the playback time of that movie. To en-able serving a larger number of streams of a singlemovie, each movie has to be striped across a numberof nodes. As we increase the number of nodes for strip-ing, we increase the bandwidth for a single movie. Ifall the movies are striped across all the nodes, we alsoimprove the load balancing across the system since ev-ery node in the system has to participate in providingaccess to each movie. Hence, we assume that all themovies are striped across all the nodes in the system.The unit of striping across the storage nodes is calleda block. In our earlier studies on disk scheduling [1],we found that 256 Kbytes is a suitable disk block sizefor delivering high real-time bandwidth from the disksubsystem.A network node that is responsible for deliveringa movie stream to the user may have to communi-cate with all the storage nodes in the system duringthe playback of that movie. This results in a pointto point communication from all the storage nodes tothe network node (possibly multiple times dependingon the striping block size, the number of nodes in thesystem and the length of the movie) during the play-back of the movie. Each network node is responsiblefor a number of movie streams. Hence the resultingcommunication pattern is random point-to-point com-munication among the nodes of the system.For the rest of the paper, we will assume that everynode in the system is both a storage node and a net-work node at the same time, i.e., a combination node.We will use a multiprocessor system with an Omegainterconnection network as an example multiprocessorsystem.Movie (data) distribution is the problem of dis-tributing the blocks of movies across the storagenodes. This involves the order in which the blocks arestriped across the storage nodes. Data organizationdetermines the bandwidth available to a movie, loadbalance across the storage nodes and the communica-tion patterns observed in the network. Movie schedul-ing is the problem of scheduling a storage node and anetwork node such that the required blocks of a moviestream arrive at the network node in time. At anygiven point in time, a node can be involved in send-ing one block of data and receiving one block of data.Communication scheduling is a direct consequence ofthe movie scheduling problem. When two transfersare scheduled to take place between two di�erent setsof source and destination pairs, the communicationmay not happen simultaneously between these pairsbecause of contention in the network. Fig. 2. shows a16-node Omega network [2] built out of 4x4 switches.Communication cannot take place simultaneously be-tween nodes 1 and 3 and nodes 9 and 2 in Fig. 2. Canmovies be scheduled such that there is no contentionat the source and the destination and in the network?Communication scheduling problem deals with this is-

(0000)00

(0001)01

(0010)02

(0011)03

(0100)04

(0101)05

(0110)06

(0111)07

(1000)08

(1001)09

(1010)10

(1011)11

(1100)12

(1101)13

(1110)14

(1111)15

(1100)12

(1101)13

(1110)14

(1111)15

(1011)11

(1010)10

(1001)09

(1000)08

(0111)07

(0110)06

(0101)05

(0100)04

(0011)03

(0010)02

(0001)01

(0000)00

Fig. 2. A 16-node Omega network.sue of scheduling the network resources for minimizingthe communication delays. If the nodes in the mul-tiprocessor system are interconnected by a completecrossbar network, there is no communication schedul-ing problem since any pair of nodes in the system cancommunicate without a conict in the network. Diskscheduling problem is dealt at each node separatelyand we will assume that the system load is such thatdisk bandwidth is not a problem.Recent work [3, 1, 4] has looked at disk schedulingin a video server. File systems for handling continuousmedia have been proposed in [5, 6, 7, 3]. Traditionaldeadline scheduling [8] techniques cannot be directlyapplied to this problem because the network trans-fer times are not constant and vary with the networkload. Simple deadline scheduling of network and stor-age nodes also doesn't avoid the possible conicts inthe network between two simultaneous transfers.2 Some notationWe will assume that time is divided into a number ofslots. The length of a slot is roughly equal to the av-erage time taken to transfer a block of movie over themultiprocessor network from a storage node to a net-work node. Average delivery time itself is not enoughin choosing a slot; we will comment later on how tochoose the size of a slot. For now, consider that timeis divided into a number of slots. Each storage nodestarts transferring a block to a network node at thebeginning of a slot and this transfer is expected to �n-

www.manaraa.com

ish by the end of the slot. It is not necessary for thetransfer to �nish strictly within the slot but for easeof presentation, we will assume that a block transfercompletes within a slot.The time taken for the playback of a movie block iscalled a frame. The length of the frame depends onthe block size and the stream rate. For a block sizeof 256 Kbytes and a stream rate of 200 Kbytes/sec,the length of a frame equals 256/200 = 1.28 seconds.We will assume that a basic stream rate of MPEG-1quality at 1.5Mbits/sec is supported by the system.When higher stream rates are required, multiple slotsare assigned within a frame to achieve the requireddelivery rate for that stream.For a given system, the block size is chosen �rst.For a given basic stream rate, the frame length is thendetermined. Slot width is then approximated by divid-ing the block size by the average achievable data ratebetween a pair of nodes in the system. This value isadjusted for variations in communication delay. Also,we require that frame length be an integer multiple ofthe slot width. From here, we will refer to the framelength in terms of number of slots per frame 'F'.Now, the complete schedule of movies in the systemcan be shown by a table as shown in Fig. 3. The ex-ample system has 4 nodes, 0, 1, 2, and 3 and contains5 movies A, B, C, D, and E. The distribution of moviesA, B, C, D, E across the nodes 0, 1, 2, and 3 is shownin Fig. 3 (a). For example, movie E is distributedcyclically across nodes in the order of 2, 1, 0, and 3.For this example, we will assume that the frame lengthF = 3. Now, if movie E needs to be scheduled at node0, data blocks need to be communicated from nodes 2,1, 0 and 3 to node 0 in di�erent slots. This is shownin Fig. 3(b) where the movie is started in slot 0. Fig.3(c) shows a complete schedule of 4 requests for moviesE, C, B, and E that arrived in that order at nodes 0,1, 2, 3 respectively. Each row in the schedule showsthe blocks received by a node in di�erent time slots.The entries in the table indicate the movie and the idof the sending node. Each column should not have asending node listed more than once since that wouldconstitute a conict at the sender. A movie stream hasits requests listed horizontally in a row. The blocks ofa single stream are always separated by F slots, in thiscase F = 3. Node 0 schedules the movie to start intime slot 0. But node 1 cannot start its movie streamin slot 0 as it conicts with node 0 for requesting ablock from the same storage node 2. Node 2 can alsoschedule its movie in slot 1. Node 3 can only sched-ule its movie in slot 2. Each request is scheduled inthe earliest available slot. The movie stream can bestarted in any column in the table as long as its blocksdo not conict with the already scheduled blocks. Theschedule table is wrapped around i.e., Slot 0 is the slotimmediately after Slot 11. For example, if another re-quest arrives for movie E at node 2, we can start thatrequest in time Slot 3, and schedule the requests in a

wrap-around fashion in time Slots 6, 9, and 0 withoutany conict at the source and the destination. Theschedule table has FN slots, where N is the numberof storage nodes in the system.The schedule can be be represented by a set(nij; sij), a set of network node and storage node pairsinvolved in a block transfer in slot j. If we specifyF such sets for the F slots in a frame (j = 1,2,...F),we would completely specify the schedule. If a moviestream is scheduled in slot j in a frame, then it isnecessary to schedule the next block of that movie inslot j of the next frame (or in (j + F) mod FN) aswell. Once the movie distribution is given, the sched-ule of transfer (nij ; sij) in slot j of one frame automat-ically determines the pair (nij; sij) in the next frame,si(j+F)mod FN being the storage node storing the nextblock of this movie and ni(j+F)mod FN = nij . It is ob-served that the F slots in a frame are not necessarilycorrelated to each other, but there is a strong correla-tion between two successive frames of the schedule. Itis also observed that the length of the table (FN) isequal to the number of streams that the whole systemcan support.Now, the problem can be broken up into two pieces:(a) Can we �nd a data distribution that, given an as-signment of (nij; sij) that is source and destinationconict-free, can produce a source and destinationconict-free schedule in the same slot j of the nextframe? and (b) Can we �nd a data distribution that,given an assignment of (nij; sij) that is source, des-tination and network conict-free, produce a source,destination and network conict-free schedule in thesame slot j of the next frame? The second part ofthe problem, (b), depends on the network of the mul-tiprocessor and that is the only reason for addressingthe problem in two stages. We will propose a generalsolution that addresses (a). We then tailor this solu-tion to suit the multiprocessor network to address theproblem (b).3 Proposed solution3.1 Part (a)It has been realized earlier that if all the moviesare distributed in the same pattern among the stor-age nodes, the movie scheduling problem becomessimple[9]. Assume all the movies are striped amongthe storage nodes starting at node 0 in the same pat-tern i.e., block i of each movie is stored on a storagenode given by i mod N , N being the number of nodesin the system. Then, a movie stream accesses stor-age nodes in a sequence once it is started at node 0.If we can start the movie stream, it implies that thesource and the destination do not collide in that timeslot. Since all the streams follow the same sequenceof source nodes, when it is time to schedule the nextblock of a stream, all the streams scheduled in the cur-

www.manaraa.com

3(a). Movie distribution.Movie/Blocks 0 1 2 3A 0 1 2 3B 1 3 0 2C 2 0 3 1D 3 2 1 0E 2 1 0 33 (b). Schedule for movie E.Slot 0 1 2 3 4 5 6 7 8 9 10 11E.2 E.1 E.0 E.33(c). Complete schedule.Req/Movie.Sender Slot 0 1 2 3 4 5 6 7 8 9 10 110 E.2 E.1 E.0 E.31 C.2 C.0 C.3 C.12 B.1 B.3 B.0 B.23 E.2 E.1 E.0 E.3Fig. 3. An example movie schedule.rent slot would request a block from the next storagenode in the sequence and hence would not have anyconicts. In our notation, a set (nij ; sij) in slot j ofa frame is followed by a set (nij; (sij + 1) mod N)in the same slot j of the next frame. It is clearthat if (nij ; sij) is source and destination conict-free,(nij; (sij + 1) mod N) is also source and destinationconict-free.This simple approach makes movie distribution andscheduling stright-forward. However, it does not ad-dress the communication scheduling problem. Also, ithas the following drawbacks: (i) not more than onemovie can be started in any given slot. Since everymovie stream has to start at storage node 0, node 0becomes a serial bottleneck for starting movies. (ii)when short movie clips are played along with longmovies, short clips increase the load on the �rst fewnodes in the storage node sequence resulting in non-uniform loads on the storage nodes. (iii) as a results of(a), the latency for starting a movie may be high if therequest arrives at node 0 just before a long sequenceof scheduled busy slots.The proposed solution addresses all the above issues(i), (ii) and (iii) and the communication schedulingproblem. The proposed solution uses one sequenceof storage nodes for storing all the movies. But, itdoes not stipulate that every movie start at node 0.We allow movies to be distributed across the storagenodes in the same sequence, but with di�erent startingpoints. For example movie 0 can be distributed in thesequence of 0, 1, 2, ..., N-1, movie 1 can be distributedin the sequence of 1, 2, 3, ..., N-1, 0 and movie k (modN) can be distributed in the sequence of k, k+1, ...,N-1, 0, ..., k-1. We can choose any such sequence of

storage nodes, with di�erent movies having di�erentstarting points in this sequence.When movies are distributed this way, we achievethe following bene�ts: (i) multiple movies can bestarted in a given slot. Since di�erent movies havedi�erent starting nodes, two movie streams can bescheduled to start at their starting nodes in the sameslot. (ii) Since di�erent movies have di�erent startingnodes, even when the system has short movie clips,all the nodes are likely to see similar workload andhence the system is likely to be better load-balanced.Di�erent short movie clips place the load on di�erentnodes and this is likely to even out. (iii) Since di�er-ent movies have di�erent starting nodes, the latencyfor starting a movie is likely to be lower since the re-quests are likely to spread out more evenly.The bene�ts of the above approach can be realizedon any network. Again, if the set (nij; sij) is sourceand destination conict-free in slot j of a frame, thenthe set (nij ; (sij+1) mod N) is given to be source anddestination conict-free in slot j of the next frame,whether or not all the movies start at node 0. Asmentioned earlier, it is possible to �nd many such dis-tributions. In the next section, it will be shown thatwe can pick a sequence that also solves problem (b),i.e., guarantees freedom from conicts in the network.3.2 Part (b)We will use Omega network as an example multi-processor interconnection network. The solution de-scribed is directly applicable to hypercube networksas well. The same technique can be employed to �ndsuitable solution for other networks. The approach

www.manaraa.com

is to choose an appropriate sequence of storage nodessuch that if movie streams can be scheduled in slot jof a frame without communication conicts, then theconsecutive blocks of those streams can be scheduledin slot j of the next frame without communicationconicts.With our notation, the problem is to determine asequence of storage nodes s0; s1; :::; sN�1 such thatgiven a set of nodes (nij; sij) that are source, desti-nation and network conict-free, it is automaticallyguaranteed that the set of nodes (nij ; s((i+1) mod N)j)are also automatically source, destination and networkconict-free.First, let us review the Omega network. Fig. 2.shows a multiprocessor system with 16 nodes whichare interconnected by a 16x16 switch with a singlepath between any pair of nodes. Fig. 2. is an Omeganetwork constructed out of 4x4 switches. To route amessage from a source node whose address is given bys0s1s2s3 to a destination node whose address is givenby d0d1d2d3, the following procedure is employed: (a)shift the source address left circular by two bits toproduce s2s3s0s1, (b) use the switch in that stage toreplace s0s1 with d0d1 and (c) repeat the above twosteps for the next two bits of the address. In general,steps (a) and (b) are repeated as the number of stagesin the network. Network conicts arise in step (b) ofthe above procedure when messages from two sourcesneed to be switched to the same output of a switch.Now, let's address our problem of guarantee-ing freedom from network conicts for a set(nij; s(i+1) mod N j) given that the set (nij; sij) isconict-free. Our result is based on the following the-orem of Omega networks.Theorem: If a set of nodes (ni; si) is networkconict-free, then the set of nodes (ni; (si + a)modN)is network conict-free, for any a.Proof: Refer to [2].The above theorem states that given a networkconict-free schedule of communication, then a uni-form shift of the source nodes yields a network conict-free schedule.There are several possibilities for choosing a stor-age sequence that guarantees the above property. Asequence of 0, 1, 2,, N-1 is one of the valid se-quences - a simple solution indeed! Let's look at anexample. The set S1 = (0,0), (1,1), (2,2), ..., (14,14),(15,15) of network-storage nodes is conict free overthe network (identity mapping). From the above theo-rem, the set S2 = (0,1), (1,2), (2,3), ..., (14,15), (15,0)is also conict-free and can be so veri�ed. If S1 is theconict-free schedule in a slot j, S2 will be the schedulein slot j of the next frame, which is also conict-free.We have shown in this section a simple round-robindistribution of movie blocks in the sequence of 0, 1,2, ..., N-1 yields an e�ective solution for our problem.This data distribution with di�erent starting pointsfor di�erent movies solves (a) the movie scheduling

problem, (b) the load balancing problem, (c) the prob-lem of long latencies for starting a movie, and (d) thecommunication scheduling problem.Now, the only question that remains to be addressedis how does one schedule the movie stream in the �rstplace, i.e., in which slot should a movie be started.When the request arrives at a node ni, we �rst deter-mine its starting node s0 based on the movie distribu-tion. We look at each available slot j (where ni is freeand s0 is free) to see if the set of already scheduledmovies do not conict for communication with thispair. We search until we �nd such a slot and schedulethe movie in that slot. Then, the complete length ofthat movie is scheduled without any conicts.4 Other issues4.1 Choosing a slot sizeIdeally, we would like all block transfers to completewithin a slot. However, due to variations in deliverytime due to variations in load over time, all the blocktransfers may not �nish in the slot they are initiated.One option is to choose the slot to be large enoughthat it accommodates the maximum delivery time fora block. This approach, however, may not use thenetwork as e�ectively since it allocates larger amountof time than the average delivery time for a block. Ifthe slot is chosen to be the average delivery time, howdo we deal with the transfers that take larger thanaverage delivery delays?Fig. 4. shows some results from simulation experi-ments on a 256-node 4-dimensional torus network with100 MB/s link transfer speeds. These results are onlybeing presented as an example and similar results haveto be obtained for the network under consideration.In the simulations, block arrival rates are varied untilthe deadlines for those block transfers could be met bythe network. The �gure shows the average time takenfor message delivery and the maximum block deliv-ery time and the maximumdelay in starting a requestat di�erent request arrival times. It is observed thatthe average message delivery time is nearly constantand varies from 2.8 ms to 2.89 ms over the consideredrange of arrival times. However, the maximum delayobserved by a block transfer goes up from 5.3 ms to 6.6ms. Similarly, the maximum delay in starting a blocktransfer goes up from 0 ms to 2.68 ms. Even thoughthe average message completion time didn't vary sig-ni�cantly over the considered range of arrival rates,the maximum delays are observed to have a highervariation. If we were to look at only the average blocktransfer times, we might have concluded that it is pos-sible to push the system throughput further since therequest inter-arrival time of 4 ms is still larger than theaverage block transfer delay of 2.89 ms. If we were tolook at only the maximum block transfer times, wewould have concluded that we could not reduce the

www.manaraa.com

 Max. delivery time 4dtorus-256nodes

 Average delivery time
� Max. starting delay (ms)

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|0

|1

|2

|3

|4

|5

|6

|7

|8

 Response times (ms) vs. inter-arrival time (ms)

 Inter-arrival time (ms)

 R
es

po
ns

e
tim

e
(m

s)

�

�

� � �Fig. 4. Observed delays in a 4-dim. 256-node system.inter-arrival times to below 6 ms. However, the realobjective of not missing any deadlines forced us toconsider both the average and maximum delays andto choose a di�erent peak operating point of 4 ms ofinter-arrival time (slot width).It is clear from the above description that we needto carry out some experiments in choosing the optimalslot size. Both the average and the maximum delaysin transferring a block over the network need to beconsidered. As mentioned earlier, the slot size is thenadjusted such that a frame is an integer multiple ofthe width of the slot.4.2 Di�erent stream ratesWhen the stream rate is di�erent from the basicstream rate, multiple slots are assigned within a frameto that stream to achieve the required stream rate.For example, for realizing a 3Mbits/sec stream rate, 2slots are assigned to the same stream within a frame.These two slots are scheduled as if they are two inde-pendent streams. Only di�erence is that the networknode assigns a larger number of block bu�ers and han-dles them di�erently than with a stream at basic rate.When the required stream rate is not a multiple ofthe basic stream rate, a similar method can be uti-lized with the last slot of that stream not necessar-ily transferring a complete block. The complexity ofbu�er management increases at the network node.4.3 Stream startup latencyIt is possible that when a stream A is requested, thenext slot where this stream could be started is faraway in time resulting in a large startup latency. In

such cases, an already scheduled stream B can bemoved around within a frame to reduce the requestedstream's latency. If stream B is originally scheduledat time T , then stream B can be moved to any freeslot within T +F �1 while maintaining guarantees onits deadlines.4.4 When network nodes and storagenodes are di�erentIt is possible to �nd mappings of network nodes andstorage nodes to the multiprocessor nodes that guar-antee freedom from network conicts. For example,assigning the network nodes the even addresses andthe storage nodes the odd addresses in the network,and distributing the movies in round-robin fashionamong the storage nodes yields similar guarantees.4.5 Node failuresIn this section, we will show how to tolerate a storagenode failure.Before, we can deal with the subject of schedul-ing, we need to talk about how the data on the faileddata is duplicated elsewhere in the system. There areseveral ways of handling data protection, RAID, andmirroring being two examples. RAID increases theload on the surviving disks by 100% and this will notbe acceptable in a system that has to meet real-timeguarantees unless the storage system can operate wellbelow its peak operating point. Mirroring may be pre-ferred because the required bandwidths from the datastored in the system are high enough that the entirestorage capacity of a disk drive may not be utilized.The un-utilized capacity can be used for storing a sec-ond copy of the data. We will assume that the stor-age system does mirroring. We will also assume thatthe mirrored data of a storage node is evenly spreadamong some set of K, K < N , storage nodes.Let the data on the failed node f0 be mapped tonodes m0;m1; :::;mK�1. Before the failure, a streammay request blocks from nodes 0; 1; 2; :::; f0; :::N � 1in a round-robin fashion. The mirrored data of afailed node is distributed among m0;m1; :::;mK�1such that the same stream would request blocks in thefollowing order after a failure: 0; 1; 2; :::;m0; :::; N �1; 0; 1; 2; :::;m1; :::; N � 1; :::; 0; 1;2; :::;mK�1; :::; N �1; 0; 1; 2; :::;m0; :::; N� 1. The blocks that would havebeen requested from the failed node are requested fromthe set of mirror nodes of that failed node in a round-robin fashion. With this model, a failure increasesthe load on the mirrored set of nodes by a factor of(1+1/K) since for every request to the failed node, anode in the set of mirrored nodes observes 1/K re-quests. This implies that K should be as large as pos-sible to limit the load increases on the mirror nodes.Scheduling is handled in the following way after afailure. In the schedule table, we allow l slots to be

www.manaraa.com

free. When the system has no failures, the system isessentially idle during these l slots. After a failure, wewill use these slots to schedule the communication ofmovie blocks that would have been served by the failednode. A data transfer (ni; f0) between a failed node f0and a network node ni is replaced by another transferof (ni;mi) where mi is the storage node that has themirror copy of the block that should have been trans-fered in (ni; f0). If we can pack all the scheduled com-munication with the mirror nodes into the availablefree slots, with some appropriate bu�er management,then we can serve all the streams that we could servebefore the failure. Now, let's examine the conditionsthat will enable us to do this.Given that the data on the failed node is now sup-ported by K other nodes, the total number of blocksthat can be communicated in l slots is given by K � l.The failed node could have been busy during (FN� l)slots before the failure. This implies thatKl � FN�l,or l � FN=(K + 1) - (1).It is noted that no network node ni can requirecommunication from the failed node f0 in more than(FN � l)=N slots. Under the assumptions of systemwide striping, once a stream requests a block from astorage node, it does not request another block fromthe same storage node for another N�1 frames. Sinceeach network node can support at most (FN � l)=Nstreams before the failure, no network node requirescommunication from the failed node f0 in more than(FN � l)=N slots. Since every node is free dur-ing the l free slots, the network nodes require thatl � (FN � l)=N , or l � FN=(N + 1) - (2). The abovecondition (1) is more stringent than (2).We can show an upper bound on the number of freeslots required. We can show that at least 4 blockscan always be transferred without network conictsas long as the source and destinations have no con-icts, when the network is built out of 4x4 switches.If a set of four destinations are chosen such that theydi�er in the most signi�cant 2 bits of the address, itcan be shown that as long as the source and destina-tions are di�erent, the block transfers do not collidein the network. The proof is based on the procedurefor switching a block from a source to a destinationand if the destinations are so chosen it can be shownthat these four transfers use di�erent links in the net-work. Since at most FN � l blocks need to be trans-ferred during the free slots, l � (FN � l)=4. Thisgives l � FN=5. This implies that if the networknodes requiring communication from the failed nodeare equally distributed over all the nodes in the sys-tem, we can survive a storage node failure with about20% overhead.The schedule of block transfers during the free slotsis allocated as explained below. A maximal number ofblock transfers are found that do not have conicts inthe network. This set is assigned one of the free slots.With the remaining set of required block transfers,

the above procedure is repeated until all the commu-nication is scheduled. This algorithm is akin to theproblem of �nding a minimal set of matchings of agraph such that the union of these matchings yieldsthe graph.Network node failures can be handled in the follow-ing way. The movie streams at the failed node arererouted (redistributed) evenly to the other networknodes in the system. This assumes that the deliverysite can be reached through any one of the networknodes. The redistributed streams are scheduled as ifthe requests for these streams (with a starting pointsomewhere over the length of the movie, not necessar-ily at the beginning) are new requests.If a combo node fails, both the above procedures forhandling the failure of a storage node and a networknode need to be invoked.4.6 Clock SynchronizationThroughout the paper, it is assumed that the clocksof all the nodes in the system are somehow synchro-nized and that the block transfers can be started atthe slot boundaries. If the link speeds are 40MB/sec,a block transfer of 256 Kbytes requires 6.4 ms, quite alarge period of time compared to the precision of thenode clocks which tick every few nanoseconds. If theclocks are synchronized to drift at most, say 600 us,the nodes observe the slot boundaries within �10%.During this time, it is possible that the block trans-fers observed collisions in the network. But during therest of the 90% transfer time, the block transfers takeplace without any contention over the network. Thisshows that the clock synchronization requirements arenot very strict. It is possible to synchronize clocks tosuch a coarse level by broadcasting a small packet ofdata at regular intervals to all the nodes through theswitch network.4.7 Other Interconnection NetworksThe proposed solution may be employed even whenthe multiprocessor system is interconnected by a net-work other than an omega network. To guaranteeconict-free transfers over the network, appropriatedata distributions for those networks have to be de-signed. For hypercube type of networks that can em-ulate an omega network, same data distribution pro-vides similar guarantees as in Omega network. It canbe shown that if movie blocks are distributed uni-formly over all nodes in a hypercube in the same order0; 1; 2; :::; n� 1 (with di�erent starting nodes), a con-ict free schedule in one slot guarantees that the set oftransfers required a frame later would also be conictfree.For other lower degree networks such as a mesh ora two dimensional torus, it can be shown that simi-lar guarantees cannot be provided. For example, in a

www.manaraa.com

two dimensional nxn torus, the average path lengthof a message is 2* n/4 = n/2. Given that the systemhas a total of 4 � n2 unidirectional links, the averagenumber of transmissions that can be in progress simul-taneously is given by 4�n2=(n=2) = 8�n, which is lessthan the number of nodes n2 in the system for n > 8.However, n simultaneous transfers are possible in a2-dimensional torus when each node sends a messageto a node along a ring. If this is a starting positionof data transfer in one slot, data transfer in the sameslots in the following frames cannot be sustained be-cause of the above limitation on the average number ofsimultaneous transfers through the network. In suchnetworks, it may be advantageous to limit the datadistribution to a part of the system so as to limit theaverage path length of a transfer and thus increasingthe number of sustainable simultaneous transfers.4.8 Incremental growthHow does the system organization change if we needto add more disks for putting more movies in the sys-tem? In our system, all the disks are �lled nearly tothe same capacity since each movie gets distributedacross all the nodes. If more disk capacity is required,we would require that at least one disk be added ateach of the nodes. If the system has N nodes, thiswould require N disks. The newly added disks can beused as a set to distribute movies across all the nodesto obtain similar guarantees for the new movies dis-tributed across these nodes. If the system size N islarge, this may pose a problem. In such a case, it ispossible to organize the system such that movies aredistributed across a smaller set of nodes. For example,the movies can be distributed across the two sets 0,2, 4, 6 and 1, 3, 5, 7 in an 8-node machine to providesimilar guarantees as when the movies are distributedacross all the 8 nodes in the system. (This result isagain a direct consequence of the above Theorem 1.)In this example, we only need to add 4 new disks forexpansion as opposed to adding 8 disks at once ear-lier. This idea can be generalized to provide a unit ofexpansion of K disks in an N node system, where Kis a factor of N .This shows that the width of striping has an impacton the system's incremental expansion. The wider themovies are striped across the nodes of the system, thelarger the bandwidth to a single movie but also thelarger the unit of incremental disk expansion.When the whole system needs to be expanded in-cluding the processors, the switch etc., the issues arethe same as in expanding a parallel system.5 SummaryIn this paper, we have shown that movie schedul-ing, movie distribution and communication scheduling

problems in a multiprocessor based video server areclosely related. We proposed a simple movie distribu-tion that simpli�es movie scheduling and guaranteesconict-free communication over the network. The so-lution is proposed in two stages. The �rst step arguedthat a simple regular pattern for storing movies acrossstorage nodes with di�erent starting nodes can reducethe movie scheduling problem to a simpler problemof scheduling the �rst block of the movie. The sec-ond step consists of deriving such a sequence such thatcommunication conicts are minimized in the network.We exploited the network topology of the multiproces-sor to derive such a sequence that guarantees freedomfrom communication conicts if the �rst block of themovie is scheduled without any communication con-icts.6 AcknowledgmentsDiscussions with Roger Haskin and Jim Wyllie havesigni�cantly contributed to our understanding of theproblem and to some of the ideas in this paper.References[1] A. L. Narasimha Reddy and Jim Wyllie. Diskscheduling in a multimedia I/O system. Proc. ofACM Multimedia Conf., Aug. 1992.[2] Duncan H. Lawrie. Access and alignment of datain an array processor. IEEE Trans. Comput., C-24(12):1145{1155, Dec. 1975.[3] F. A. Tobagi, J. Pang, R. Biard, and M. Gang.Streaming raid: A disk storage system for videoand audio �les. Proc. of ACM Multimedia Conf.,pages 393{400, Aug. 1993.[4] P. S. Yu, M. S. Chen, and D. D. Kandlur. Groupedsweeping scheduling for dasd-based multimediastorage management. Multimedia Systems, 1:99{109, 1993.[5] H. M. Vin and P. V. Rangan. Designing �le sys-tems for digital video and audio. Proc. of 13thACM Symp. on Oper. Sys. Principles, 1991.[6] D. Anderson, Y. Osawa, and R. Govindan. A�le system for continuous media. ACM Trans. onComp. Systems, pages 311{337, Nov. 1992.[7] R. Haskin. The shark continuous-media �le server.Proc. of IEEE COMPCON, Feb. 1993.[8] C. L. Liu and J. W. Layland. Scheduling algo-rithms for multiprogramming in a hard real-timeenvironment. Journal of ACM, pages 46{61, 1973.[9] Roger Haskin. Personal communication. IBM Al-maden Res. Center, 1994.

